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Biological membranes are, at the molecular level, quasi-two dimensional systems. Membrane com-
ponents are often distributed non-uniformly in the bilayer plane, as a consequence of lipid phase
separation/domain formation or local enrichment/depletion of particular lipid species arising form
favorable/unfavorable lipid–membrane protein interactions. Due to its explicit dependence on donor–
acceptor distance or local acceptor concentration, resonance energy transfer (RET) has large potential
in the characterization of membrane heterogeneity. RET formalisms for the basic geometric arrange-
ments relevant for membranes have now been known for several decades. However, these formalisms
usually assume uniform distributions, and more general models are required for the study of mem-
brane lateral heterogeneity.
We present a model that addresses the possibility of non-uniform acceptor (e.g., lipid probe) dis-
tribution around each donor (e.g., protein) in a membrane. It considers three regions with distinct
local acceptor concentration, namely, an exclusion zone, the membrane bulk, and, lying in between,
a region of enhanced probability of finding acceptors (annular region). Numerical solutions are pre-
sented, and convenient empirical fitting functions are given for RET efficiency as a function of bulk
acceptor surface concentration, for several values of the model parameters. The usefulness of the
formalism is illustrated in the analysis of experimental data.
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INTRODUCTION

The original formulation of resonance energy trans-
fer (RET), as carried out by Förster, assumed uniform
distribution of donors and acceptors in an infinite medium
[1]. However, this is not necessarily the case in several
systems, such as crystals [2], polymers, [3] or biologi-
cal membrane models. Specifically for the latter, nonuni-
form probe distribution may result from probe aggrega-
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Évora, Évora, Portugal.

2 Instituto de Biologı́a Molecular y Celular, Universidad Miguel
Hernández, Elche, Spain.

3 Centro de Quı́mica-Fı́sica Molecular, Instituto Superior Técnico,
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tion, lipid phase separation, or differential lipid affinity
for the immediate vicinity of a membrane protein, the so-
called annular region (see Ref. [4] for a review of RET
in nonhomogeneous membrane systems). In these sys-
tems, RET data analysis with adequate models may lead
to recovery of relevant biophysical information, such as
probe partition coefficients, phase boundary limits and es-
timation of domain sizes in lipid mixtures [5, 6], or lipid
selectivity constants for a given membrane protein.

Regarding the latter, to our knowledge, two models
have been used in past studies. The first one is based on
approximate analytical expressions for the average rate of
RET (〈kT〉) in membranes undergoing phase separation
or protein aggregation, derived by Gutierrez-Merino [7,
8]. This author later extended his formalism to the study
of protein–lipid selectivity [9–11]. This simple model has
some limitations, namely, the simplification that underlies
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Fig. 1. Plot of the ratio between the acceptor distribution function
considered in the present model and that for uniform distribution (e.g.,
2R/R2

d for a planar disk), showing the parameters R1, R2, and B.

the formalism, which consists of considering RET only to
neighboring acceptor molecules. On the other hand, the
experimental observable being the average RET efficiency
given by

〈E〉 =
〈

kT

kT + kD

〉
(1)

where kD is the donor intrinsic decay rate coefficient,
the relationship to 〈kT〉 is not straightforward. It is pro-
posed that if the setting of experimental conditions is
such that 〈E〉 is low (namely, 〈kT〉 is much smaller than
kD), then〈E〉 ∼= 〈kT〉/kD [7]. However, low accurate RET
efficiencies are difficult to measure experimentally.

A second formalism was recently used by Fernandes
et al. in the characterization of the lipid selectivity by the
M13 bacteriophage major coat protein [12]. This protein
has a single transmembrane segment, around which an
annular region consisting of a single phospholipid layer
(12 lipid molecules) was considered. Naturally, the ap-
plication of this formalism to larger proteins, for which
the number of lipid molecules in the annular region is
unknown, is not immediate. On the other hand, the some-
what complex equations of this formalism limit its appeal
for potential users.

Fig. 2. Spatial geometry for RET in bilayer geometry (between donors
in a plane and acceptors in another, parallel to that of donors; adapted
from Ref. [16]).

Fig. 3. RET efficiency as a function of dimensionless acceptor
concentration γ = nπR2

0 for planar geometry (βw = w/R0 = 0) and
β1 = R1/R0 = 1.50. Numerical results (◦: B = 1.05; •: B = 1.25; �:
B = 1.50; �: B = 2.00; �: B = 3.00) and empirical fits (solid lines) are
shown for different values of the factor of acceptor annular enrichment,
B. The previously obtained result (numerical integration of the decay
law given in Ref. [13]) for B = 1.00 (uniform distribution outside the
exclusion region) is also shown for comparison (dashed line).

In this report, an alternative formalism for RET in
membranes with lipid–protein selectivity is proposed. It
is inspired in the distribution function used by Rotman
and Hartmann in three-dimensional crystals [2], in that,
around each donor, three regions are considered: (i) an
exclusion region closest to the donor (R < R1), reflecting
the radius of the protein; (ii) the annular region (R1 <

R < R2), for which there is an increased probability of
finding acceptors, characterized by a parameter B; and
(iii) a region for which the acceptor concentration is equal
to the overall value (R > R2). The resulting local accep-
tor concentration is a step-function of the donor–acceptor
distance, as shown in Fig. 1. The actual derivation of the
donor decay law is considerably different to that presented
by Rotman and Hartmann for three-dimensional media,
because, in addition to planar geometry (for which adap-
tation of these authors’ model would be straightforward),
we consider the more general situation of donors and ac-
ceptors located in distinct parallel planes in the bilayer.
In addition, and taking into account the complexity of the
final equations, we present fitting parameters of empiri-
cal equations to the numerical exact RET efficiency results
(similarly to previous RET theoretical studies for different
topologies [13, 14]), which can be easily used by exper-
imental researchers who wish to obtain a rapid estimate
of the relative enrichment of a given component in the
annular region. Finally, we illustrate this method with the
analysis of published RET data between the tryptophan
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Table I. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 0

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05

A0 0.33160 0.36971 0.45075 0.57177 0.70518 0.83413 0.90841 0.96820
A1 −0.76090 −0.75470 −0.72460 −0.63981 −0.50310 −0.32270 −0.19200 −0.07020
A2 0.12356 0.06215 −0.04910 −0.17210 −0.25010 −0.24210 −0.17780 −0.07700
A3 0.52348 0.49434 0.42057 0.27734 0.10443 −0.03980 −0.07850 −0.05130
A4 0.19398 0.20390 0.20916 0.17691 0.10819 0.02619 −0.01130 −0.01630

B = 1.25

A0 0.32930 0.33966 0.40475 0.52656 0.66806 0.80959 0.89357 0.96270
A1 −0.76270 −0.75330 −0.72560 −0.66008 −0.53920 −0.36010 −0.21970 −0.08210
A2 0.12603 0.11722 0.03039 −0.11279 −0.22580 −0.24970 −0.19490 −0.08860
A3 0.52707 0.51155 0.44731 0.32318 0.15186 −0.01560 −0.07500 −0.05710
A4 0.19517 0.18937 0.18918 0.17830 0.12580 0.04173 −0.00530 −0.01740

B = 1.50

A0 0.32926 0.33304 0.37594 0.48840 0.63318 0.78501 0.87821 0.95686
A1 −0.76280 −0.75770 −0.72820 −0.67211 −0.56800 −0.39490 −0.24730 −0.09450
A2 0.12600 0.12536 0.07881 −0.05901 −0.19680 −0.25210 −0.20960 −0.10030
A3 0.52711 0.52154 0.46671 0.35464 0.19329 0.01121 −0.06840 −0.06240
A4 0.19520 0.19212 0.17899 0.17301 0.13771 0.05721 0.00195 −0.01820

B = 2.00

A0 0.32926 0.33076 0.35569 0.44797 0.58987 0.75161 0.85638 0.94827
A1 −0.76280 −0.76040 −0.73560 −0.68323 −0.59780 −0.43800 −0.28470 −0.11250
A2 0.12600 0.12653 0.10871 −8.36E − 04 −0.15450 −0.24810 −0.22600 −0.11650
A3 0.52711 0.52533 0.48841 0.38552 0.23991 0.04996 −0.05470 −0.06860
A4 0.19520 0.19399 0.17905 0.16522 0.14671 0.07713 0.01375 −0.01860

B = 3.00

A0 0.32926 0.33001 0.34562 0.41761 0.54983 0.71687 0.83230 0.93835
A1 −0.76280 −0.76150 −0.74270 −0.69353 −0.62110 −0.47820 −0.32360 −0.13290
A2 0.12600 0.12647 0.12017 0.04167 −0.11100 −0.23650 −0.23850 −0.13370
A3 0.52711 0.52639 0.50287 0.41170 0.27911 0.09126 −0.03500 −0.07370
A4 0.19520 0.19464 0.18305 0.16183 0.15061 0.09571 0.02797 −0.01800

residues of the nicotinic acetylcholine receptor (AcChR)
from Torpedo marmorata to trans-parinaric acid (t-PnA)
in egg phosphatidylcholine (egg-PC)/1,2-dimirystoyl-sn-
glycero-phosphatidic acid (DMPA)/cholesterol (2:1:1)
vesicles [15].

THEORY

The starting point is the usual set of approximations
for derivation of the RET kinetics for an ensemble of
acceptors, that is:

1. Donors and acceptors interact through the dipolar
mechanism, in the very weak coupling limit;

2. The number of excited donors is negligible rela-
tive to the number of acceptor molecules;

3. Homotransfer among donors is neglected;

4. Translational diffusion during the donor excited
state lifetime is neglected;

5. There is a single Förster distance R0 for all donor–
acceptor pairs.

Let us focus on one donor molecule. The overall
rate coefficient of RET from this donor to all N acceptors
within a given region is

kT = 1

τD

[
1 +

N∑
i=1

(
R0

Ri

)6
]

(2)

where τD is the donor lifetime in the absence of acceptor,
and Ri is the distance between the donor and the i-th
acceptor molecule.

The survival probability for the donor molecule in
question, ρ(t), can be obtained by solving the differential
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Table II. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 0.25

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05
A0 0.35312 0.39403 0.47780 0.59760 0.72411 0.84369 0.91268 0.96912
A1 −0.76073 −0.74881 −0.70922 −0.61684 −0.47989 −0.30706 −0.18376 −0.06822
A2 0.08617 0.02569 −0.08066 −0.19231 −0.25505 −0.23685 −0.17228 −0.07501
A3 0.51127 0.47531 0.39109 0.24418 0.08054 −0.04757 −0.07880 −0.05018
A4 0.20357 0.20886 0.20534 0.16582 0.09653 0.02044 −0.01265 −0.01602

B = 1.25
A0 0.35022 0.36354 0.43284 0.55409 0.68875 0.82038 0.89850 0.96379
A1 −0.76314 −0.75028 −0.71517 −0.64083 −0.51707 −0.34360 −0.21052 −0.07973
A2 0.08902 0.07914 −0.00722 −0.14018 −0.23606 −0.24624 −0.18939 −0.08632
A3 0.51569 0.49650 0.42330 0.29183 0.12583 −0.02609 −0.07642 −0.05597
A4 0.20510 0.19765 0.19169 0.17159 0.11501 0.03496 −0.00739 −0.01723

B = 1.50
A0 0.35010 0.35590 0.40419 0.51744 0.65566 0.79711 0.88387 0.95814
A1 −0.76335 −0.75548 −0.72038 −0.65635 −0.54721 −0.37766 −0.23718 −0.09178
A2 0.08893 0.08828 0.03841 −0.09243 −0.21229 −0.25073 −0.20438 −0.09776
A3 0.51579 0.50778 0.44550 0.32593 0.16620 −0.00184 −0.07104 −0.06127
A4 0.20519 0.20074 0.18457 0.17074 0.12853 0.04963 −8.10E − 04 −0.01808

B = 2.00
A0 0.35007 0.35288 0.38304 0.47839 0.61472 0.76567 0.86319 0.94986
A1 −0.76341 −0.75892 −0.72914 −0.67102 −0.57920 −0.42003 −0.27321 −0.10917
A2 0.08889 0.08995 0.06826 −4.00E − 02 −0.17675 −0.25006 −0.22135 −0.11355
A3 0.51580 0.51268 0.46858 0.35976 0.21263 0.03365 −0.05932 −0.06757
A4 0.20521 0.20308 0.18547 0.16748 0.14040 0.06884 9.96 E − 03 −0.01859

B = 3.00
A0 0.35006 0.35175 0.37181 0.44853 0.57688 0.73313 0.84052 0.94034
A1 −0.76343 −0.76054 −0.73707 −0.68345 −0.60475 −0.45972 −0.31058 −0.12880
A2 0.08888 0.08997 0.08085 −6.61E − 04 −0.13949 −0.24244 −0.23481 −0.13036
A3 0.51581 0.51431 0.48427 0.38752 0.25246 0.07195 −0.04208 −0.07284
A4 0.20521 0.20403 0.18969 0.16653 0.14751 0.08721 0.02303 −0.01820

equation

− dρ(t)

dt
= kTρ(t) = 1

τD

[
1 +

N∑
1

(
R0

Ri

)6
]

ρ(t) (3)

with the initial condition ρ(0) = 1, leading to

ρ(λ) = exp(−λ)
N∏

i=1

exp

[
−λ

(
R0

Ri

)6
]

(4)

where λ = t/τD is the reduced time. The average decay
(taking into account all statistical arrangements of the N
acceptor molecules) for a donor located in the center of a
finite disk with radius Rd,〈ρ(t)〉N , is given by:

〈ρ(λ)〉N

= exp(−λ)
N∏

i=1

∫ Rd

0
exp

[
−λ

(
R0

Ri

)6
]

W (Ri) dRi (5)

where W(Ri)dRi is the probability of finding acceptor
molecule Ai in the ring of inner radius Ri and outer radius
Ri + dRi. The acceptor distribution function is normalized,
in the sense that

∫ Rd

0
W (Ri) dRi = 1 (6)

Because all acceptors have the same distribution
function, W(Ri)dRi = W(Rj)dRj = simply W(R)dR, all in-
tegrals in Eq. (5) are identical, and denoting them by J(λ),
we can write

〈ρ(t)〉N = exp

(
− t

τD

)
[J (t)]N (7)

We now consider specifically that donors and ac-
ceptors are distributed in parallel planes in the bi-
layer, see Fig. 2. For uniform distribution in a planar
disk, W (R) = 2R/R2

d , and Davenport et al. [16] showed
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Table III. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 0.50

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05
A0 0.42575 0.47281 0.55919 0.66873 0.77339 0.86834 0.92394 0.97167
A1 −0.74046 −0.71260 −0.65046 −0.54504 −0.41439 −0.26518 −0.16181 −0.06269
A2 −0.02101 −0.07537 −0.16154 −0.23575 −0.25899 −0.21946 −0.15657 −0.06942
A3 0.45028 0.39706 0.29332 0.15147 0.02148 −0.06441 −0.07813 −0.04713
A4 0.21485 0.20663 0.18191 0.12953 0.06499 0.00655 −0.01572 −0.01529

B = 1.25
A0 0.42125 0.44279 0.51845 0.63065 0.74305 0.84831 0.91151 0.96679
A1 −0.74455 −0.72235 −0.66884 −0.57691 −0.45264 −0.29883 −0.18593 −0.07328
A2 −0.01723 −0.03065 −0.10775 −0.20355 −0.25305 −0.23270 −0.17356 −0.08002
A3 0.45691 0.42674 0.33551 0.19910 0.05865 −0.05001 −0.07842 −0.05281
A4 0.21731 0.20489 0.18363 0.14403 0.08364 0.01802 −0.01214 −0.01659

B = 1.50
A0 0.42082 0.43303 0.49183 0.59897 0.71508 0.82859 0.89883 0.96165
A1 −0.74523 −0.72956 −0.68108 −0.59981 −0.48455 −0.33023 −0.20981 −0.08430
A2 −0.01736 −0.02019 −0.07298 −0.17284 −0.24235 −0.24181 −0.18875 −0.09070
A3 0.45741 0.44046 0.36298 0.23573 0.09329 −0.03283 −0.07620 −0.05806
A4 0.21764 0.20881 0.18481 0.15244 0.09907 0.03002 −0.00741 −0.01760

B = 2.00
A0 0.42064 0.42805 0.47026 0.56511 0.68098 0.80240 0.88122 0.95422
A1 −0.74555 −0.73482 −0.69370 −0.62223 −0.51961 −0.36934 −0.24181 −0.10003
A2 −0.01748 −0.01698 −0.04730 −1.38E − 01 −0.22386 −0.24855 −0.20656 −0.10536
A3 0.45757 0.44810 0.38827 0.27311 0.13492 −0.00672 −0.06953 −0.06444
A4 0.21776 0.21213 0.18888 0.15932 0.11534 0.04631 5.83E − 04 −0.01842

B = 3.00
A0 0.42055 0.42574 0.45721 0.53841 0.64970 0.77577 0.86225 0.94580
A1 −0.74570 −0.73775 −0.70355 −0.63971 −0.54870 −0.40625 −0.27473 −0.11758
A2 −0.01755 −0.01629 −0.03406 −0.10979 −0.20277 −0.24995 −0.22181 −0.12088
A3 0.45763 0.45153 0.40566 0.30274 0.17214 0.02241 −0.05851 −0.07005
A4 0.21781 0.21391 0.19372 0.16468 0.12799 0.06267 0.01053 −0.01854

that

J (λ)

= 2w2

R2
d

∫ 1

w/
√

w2+R2
d

exp

[(
− t

τD

)(
R0

w

)6

α6

]
α−3dα (8)

or, equivalently,

J (λ) = 1 − 2

N
β2

wγ

∫ 1

w/
√

w2+R2
d

f (λ, βw, α) dα (9)

where

f (λ, βw, α) =
[

1 − exp

(
−λ

α6

β6
ω

)]
α−3 (10)

and γ is the number of acceptors inside a disk of ra-
dius R0 (and is related to the surface molecular density n
throughγ = nπR2

0), α = cos θ in Fig. 2, and βw = w/R0

is the reduced interplanar spacing.
We now assume a step function (with an exclusion

region for R < plane R1, and an acceptor-enriched region

Fig. 4. Approximate theoretical RET efficiency curves for
βw = w/R0 = 0.375 and β1 = R1/R0 = 1.25 (from bottom to top:
B = 1.05, B = 1.25, B = 1.5, B = 2, B = 3; see text for approximation
details) and experimental results of RET between AcChR tryptophan
and t-PnA in egg-PC/DMPA/cholesterol (2:1:1) vesicles [15]. The best
fit is obtained for B = 1.25.
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Table IV. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 0.75

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05
A0 0.56017 0.60628 0.68005 0.76197 0.83415 0.89893 0.93853 0.97527
A1 −0.65195 −0.60905 −0.53245 −0.43025 −0.32266 −0.20987 −0.13255 −0.05482
A2 −0.16515 −0.19899 −0.24089 −0.25934 −0.24212 −0.18932 −0.13363 −0.06134
A3 0.29350 0.23307 0.13676 0.03463 −0.03979 −0.07699 −0.07394 −0.04249
A4 0.18363 0.16208 0.12310 0.07240 0.02618 −0.00776 −0.01818 −0.01409

B = 1.25
A0 0.55477 0.58135 0.64807 0.73268 0.81092 0.88326 0.92844 0.97102
A1 −0.65750 −0.62798 −0.56181 −0.46607 −0.35817 −0.23844 −0.15283 −0.06410
A2 −0.16175 −0.17470 −0.21723 −0.25164 −0.24953 −0.20541 −0.14966 −0.07085
A3 0.30111 0.26476 0.17785 0.07115 −0.01705 −0.07124 −0.07707 −0.04791
A4 0.18676 0.17067 0.13737 0.09010 0.04088 −6.92E − 04 −0.01659 −0.01548

B = 1.50
A0 0.55394 0.57180 0.62754 0.70923 0.79020 0.86824 0.91837 0.96662
A1 −0.65863 −0.63691 −0.58008 −0.49257 −0.38794 −0.26480 −0.17262 −0.07363
A2 −0.16167 −0.16749 −0.20135 −0.24217 −0.25236 −0.21816 −0.16420 −0.08036
A3 0.30221 0.27781 0.20384 0.10050 0.00523 −0.06305 −0.07829 −0.05297
A4 0.18737 0.17544 0.14598 0.10306 0.05401 0.00704 −1.41E − 02 −0.01663

B = 2.00
A0 0.55352 0.56590 0.61010 0.68470 0.76576 0.84892 0.90477 0.96038
A1 −0.65923 −0.64326 −0.59610 −0.51879 −0.42093 −0.29727 −0.19864 −0.08701
A2 −0.16169 −0.16420 −0.18842 −2.30E − 01 −0.25183 −0.23105 −0.18166 −0.09327
A3 0.30273 0.28610 0.22629 0.13113 0.03306 −0.04943 −0.07726 −0.05925
A4 0.18768 0.17900 0.15378 0.11570 0.06912 0.01795 −9.63E − 03 −0.01778

B = 3.00
A0 0.55331 0.56270 0.59857 0.66526 0.74389 0.82990 0.89057 0.95347
A1 −0.65954 −0.64702 −0.60729 −0.53886 −0.44873 −0.32771 −0.22493 −0.10162
A2 −0.16172 −0.16291 −0.18059 −2.19E − 01 −0.24835 −0.24028 −0.19738 −0.10680
A3 0.30298 0.29057 0.24151 0.15546 0.05885 −0.03333 −0.07334 −0.06501
A4 0.18783 0.18112 0.15949 0.12533 0.08213 0.02934 −0.00376 −0.01846

for R1 < R < R2) for the local acceptor concentration as
a function of distance to each donor, Fig. 1. The acceptor
distribution function is given by

W (R) =




0 ⇐ R ≤ R1
2BR

R2
d

⇐ R1 < R < R2

2R

R2
d

⇐ R2 < R < Rd

(11)

The B parameter is the factor of acceptor enrichment
in the donor immediate vicinity, relative to a uniform
distribution, and it is related to R1 and R2 through the
relationship (which is a consequence of the normalization
of W(R)):

B = R2
2

R2
2 − R2

1

⇔ R2 =
√

B

B − 1
R1 (12)

For this acceptor distribution, J(λ) can be partitioned
into three integrals, J0(λ), J1(λ), and J2(λ),

J (λ) = J0(λ) + J1(λ) + J2(λ) (13)

defined over the the regions R < R1, R1 < R < R2, and
R2 < R < Rd, respectively. As there are no acceptors
for R < R1, it follows that J0(λ) = 0. J2(λ) is very simi-
lar to J(λ) in the uniform case (Eqs. (8) and (9)), with the
difference that the upper limit is not 1 (which would corre-
spond to θ = π /2 or R2 = 0), but w/(w2 + R2

2)1/2. We can
write

J2(λ) = 2w2

R2
d

∫ w/
√

w2+R2
2

w/
√

w2+R2
d

exp

(
−λ

α6

β6
w

)
α−3 dα

= 2w2

R2
d

(∫ w/
√

w2+R2
2

w/
√

w2+R2
d

α−3 dα

−
∫ w/

√
w2+R2

2

w/
√

w2+R2
d

f (λ, βw, α) dα

)
(14)
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Table V. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 1.00

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05
A0 0.72125 0.75183 0.79770 0.84595 0.88803 0.92724 0.95295 0.97925
A1 −0.48424 −0.44410 −0.37924 −0.30333 −0.23000 −0.15527 −0.10273 −0.04604
A2 −0.25569 −0.25920 −0.25548 −0.23550 −0.20123 −0.15164 −0.10787 −0.05211
A3 0.08387 0.04655 −0.00508 −0.04932 −0.07375 −0.07753 −0.06553 −0.03690
A4 0.09864 0.07898 0.04921 0.01910 −0.00313 −0.01644 −0.01856 −0.01252

B = 1.25
A0 0.71751 0.73604 0.77685 0.82633 0.87200 0.91589 0.94525 0.97572
A1 −0.48915 −0.46408 −0.40836 −0.33451 −0.25848 −0.17749 −0.11875 −0.05383
A2 −0.25523 −0.25606 −0.25651 −0.24434 −0.21566 −0.16776 −0.12196 −0.06031
A3 0.08852 0.06623 0.01862 −0.03189 −0.06575 −0.07855 −0.07050 −0.04187
A4 0.10109 0.08891 0.06266 0.03121 0.00489 −1.35E − 02 −0.01859 −0.01392

B = 1.50
A0 0.71682 0.73002 0.76450 0.81173 0.85848 0.90545 0.93781 0.97213
A1 −0.49012 −0.47192 −0.42514 −0.35677 −0.28162 −0.19742 −0.13397 −0.06168
A2 −0.25526 −0.25527 −0.25626 −0.24891 −0.22568 −0.18104 −0.13468 −0.06839
A3 0.08933 0.07363 0.03300 −0.01760 −0.05703 −0.07762 −0.07404 −0.04654
A4 0.10156 0.09278 0.07053 0.04041 0.01230 −0.00998 −1.80E − 02 −0.01513

B = 2.00
A0 0.71645 0.72608 0.75422 0.79722 0.84338 0.89265 0.92814 0.96718
A1 −0.49065 −0.47720 −0.43899 −0.37820 −0.30661 −0.22121 −0.15338 −0.07244
A2 −0.25530 −0.25498 −0.25582 −2.52E − 01 −0.23481 −0.19547 −0.14998 −0.07918
A3 0.08975 0.07842 0.04509 −0.00259 −0.04555 −0.07434 −0.07696 −0.05236
A4 0.10181 0.09536 0.07709 0.04961 0.02108 −0.00479 −1.65E − 02 −0.01649

B = 3.00
A0 0.71626 0.72381 0.74734 0.78606 0.83045 0.88062 0.91847 0.96186
A1 −0.49093 −0.48029 −0.44826 −0.39430 −0.32732 −0.24294 −0.17239 −0.08386
A2 −0.25533 −0.25491 −0.25551 −2.54E − 01 −0.24108 −0.20729 −0.16395 −0.09027
A3 0.08997 0.08114 0.05322 0.00939 −0.03452 −0.06941 −0.07815 −0.05785
A4 0.10193 0.09686 0.08150 0.05671 0.02888 8.14E − 04 −0.01409 −0.01755

After calculation of the first integral in the latter
equation, one obtains

J2(λ) = 1 −
(

R2

Rd

)2

− 2w2

R2
d

∫ w/
√

w2+R2
2

w/
√

w2+R2
d

f (λ, βw, α) dα

(15)
J1(λ) is obtained similarly, replacing R2 with R1, Rd with
R2, and multiplying by the acceptor enrichment factor in
this region, B:

J2(λ) = B
2w2

R2
d

∫ w/
√

w2+R2
1

w/
√

w2+R2
2

exp

(
−λ

α6

β6
w

)
α−3 dα

= B
2w2

R2
d

(∫ w/
√

w2+R2
1

w/
√

w2+R2
2

α−3 dα

−
∫ w/

√
w2+R2

1

w/
√

w2+R2
2

f (λ, βw, α) dα

)
(16)

and, after integration of the α−3 term,

J2(λ) = BR2
2

R2
d

− BR2
1

R2
d

−2w2B

R2
d

w/
√

w2+R2
2∫

w/
√

w2+R2
d

f (λ, βw, α) dα (17)

Inserting the results of Eqs. (15) and (17) into Eq. (13):

J (λ) = 1 + 1

R2
d

[R2
2(B − 1) − BR2

1]

−2w2

R2
d

[∫ w/
√

w2+R2
2

w/
√

w2+R2
d

f (λ, βw, α) dα

− B

∫ w/
√

w2+R2
2

w/
√

w2+R2
d

f (λ, βw, α) dα

]
(18)
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Table VI. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 1.25

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05
A0 0.84336 0.85796 0.88062 0.90504 0.92726 0.94939 0.96517 0.98310
A1 −0.30776 −0.28313 −0.24343 −0.19837 −0.15523 −0.11017 −0.07677 −0.03750
A2 −0.23740 −0.22756 −0.20859 −0.18204 −0.15161 −0.11452 −0.08345 −0.04292
A3 −0.04759 −0.05801 −0.07074 −0.07813 −0.07753 −0.06803 −0.05457 −0.03103
A4 0.02056 0.01218 3.27E − 04 −0.01008 −0.01644 −0.01868 −0.01696 −0.01075

B = 1.25
A0 0.84166 0.84996 0.86892 0.89319 0.91697 0.94159 0.95954 0.98026
A1 −0.31059 −0.29659 −0.26400 −0.22041 −0.17539 −0.12627 −0.08881 −0.04382
A2 −0.23847 −0.23287 −0.21858 −0.19543 −0.16631 −0.12835 −0.09499 −0.04974
A3 −0.04632 −0.05225 −0.06437 −0.07511 −0.07857 −0.07243 −0.06006 −0.03541
A4 0.02155 0.01679 0.00638 −0.00525 −0.01383 −1.84E − 02 −0.01792 −0.01208

B = 1.50
A0 0.84135 0.84723 0.86280 0.88524 0.90896 0.93482 0.95433 0.97744
A1 −0.31112 −0.30118 −0.27459 −0.23490 −0.19078 −0.14002 −0.09982 −0.05003
A2 −0.23868 −0.23468 −0.22338 −0.20355 −0.17678 −0.13959 −0.10518 −0.05633
A3 −0.04610 −0.05027 −0.06063 −0.07213 −0.07818 −0.07519 −0.06440 −0.03949
A4 0.02173 0.01836 0.00968 −0.00164 −0.01127 −0.01764 −1.84E − 02 −0.01326

B = 2.00
A0 0.84119 0.84548 0.85800 0.87788 0.90061 0.92700 0.94789 0.97369
A1 −0.31140 −0.30414 −0.28284 −0.24809 −0.20655 −0.15567 −0.11327 −0.05828
A2 −0.23880 −0.23586 −0.22698 −2.10E − 01 −0.18686 −0.15176 −0.11718 −0.06491
A3 −0.04598 −0.04901 −0.05754 −0.06879 −0.07679 −0.07727 −0.06887 −0.04455
A4 0.02183 0.01937 0.01232 0.00191 −0.00818 −0.01624 −1.86E − 02 −0.01463

B = 3.00
A0 0.84110 0.84448 0.85489 0.87250 0.89386 0.92004 0.94176 0.96980
A1 −0.31155 −0.30583 −0.28815 −0.25761 −0.21908 −0.16936 −0.12590 −0.06674
A2 −0.23886 −0.23654 −0.22924 −2.15E − 01 −0.19443 −0.16186 −0.12798 −0.07351
A3 −0.04592 −0.04830 −0.05548 −0.06604 −0.07500 −0.07818 −0.07224 −0.04935
A4 0.02187 0.01995 0.01405 0.00463 −0.00541 −1.46E − 02 −0.01836 −0.01582

Taking into account the interdependence of R1, R2,
and B (Eq. (12)), the second term on the latter equation
vanishes. Using γ = nπR2

0 and N = nπR2
d, one obtains

J (λ) = 1 − 2

N
β2

wγ

[∫ w/
√

w2+R2
2

w/
√

w2+R2
d

f (λ, βw, α) dα

− B

∫ w/
√

w2+R2
1

w/
√

w2+R2
2

f (λ, βw, α) dα

]
(19)

Inserting this expression for J(t) in Eq. (7), and taking
the limit (N→∞, Rd→∞), one obtains the macroscopic
decay law. The result is

i(λ) = exp

(
−λ − 2β2

wγ

[∫ βw/
√

β2
w+β2

2

0
f (λ, βw, α) dα

−B

∫ βw/
√

β2
w+β2

1

βw/
√

β2
w+β2

2

f (λ, βw, α) dα

])
(20)

In this equation, β1 = R1/R0 and β2 = R2/R0 were in-
troduced, to show that i is in fact a function of five dimen-
sionless variables: a dimensionless average concentration
γ , the reduced time λ, the reduced interplanar spacing
βw, the reduced exclusion distance β1, and the relative
enrichment factor for the acceptor in the annular region,
B. As noted above, β2 is not an independent parameter, as
it is determined by the values of β1 and B.

The integrals in Eq. (20) present a minor problem
(as pointed out in Ref. [16]), because f is not defined for
α = 0 or βw = 0 (see Eq. (9)). One way to deal with the
singularity for α→0 would be to expand f in an infinite
series of powers of α, and carry out integration of each
term of the series, thus obtaining an analytical expres-
sion for the decay law. Another possibility is to note that
lim
α→0

f (λ, βw, 0) = 0 for βw �=0, and carry out the numer-

ical integration. We found that the latter option is much
more convenient from the numerical point of view. There
is still the problem for βw = 0 (planar geometry). To cir-
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Table VII. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 1.50

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05
A0 0.91333 0.91947 0.92981 0.94159 0.95298 0.96518 0.97461 0.98649
A1 −0.18253 −0.17059 −0.15015 −0.12628 −0.10267 −0.07675 −0.05626 −0.02991
A2 −0.17149 −0.16302 −0.14770 −0.12841 −0.10781 −0.08344 −0.06283 −0.03457
A3 −0.07891 −0.07868 −0.07693 −0.07253 −0.06550 −0.05456 −0.04336 −0.02545
A4 −0.01289 −0.01463 −1.69E − 02 −0.01844 −0.01856 −0.01696 −0.01432 −0.00897

B = 1.25
A0 0.91268 0.91583 0.92372 0.93481 0.94663 0.95997 0.97061 0.98426
A1 −0.18379 −0.17768 −0.16222 −0.14007 −0.11590 −0.08788 −0.06501 −0.03491
A2 −0.17237 −0.16807 −0.15683 −0.13970 −0.11951 −0.09412 −0.07177 −0.04008
A3 −0.07891 −0.07884 −0.07810 −0.07531 −0.06972 −0.05966 −0.04841 −0.02916
A4 −0.01270 −0.01361 −0.01564 −0.01769 −0.01864 −1.79E − 02 −0.01560 −0.01016

B = 1.50
A0 0.91257 0.91474 0.92096 0.93077 0.94213 0.95577 0.96709 0.98212
A1 −0.18401 −0.17979 −0.16765 −0.14820 −0.12516 −0.09680 −0.07262 −0.03967
A2 −0.17252 −0.16956 −0.16083 −0.14612 −0.12741 −0.10242 −0.07936 −0.04527
A3 −0.07891 −0.07887 −0.07844 −0.07655 −0.07216 −0.06328 −0.05246 −0.03256
A4 −0.01267 −0.01330 −0.01497 −0.01705 −0.01843 −0.01833 −1.65E − 02 −0.01122

B = 2.00
A0 0.91251 0.91407 0.91894 0.92731 0.93779 0.95121 0.96298 0.97938
A1 −0.18412 −0.18109 −0.17162 −0.15510 −0.13403 −0.10636 −0.08146 −0.04576
A2 −0.17260 −0.17047 −0.16371 −1.51E − 01 −0.13477 −0.11108 −0.08798 −0.05181
A3 −0.07891 −0.07888 −0.07863 −0.07739 −0.07412 −0.06670 −0.05677 −0.03671
A4 −0.01265 −0.01311 −0.01445 −0.01639 −0.01804 −0.01859 −1.74E − 02 −0.01246

B = 3.00
A0 0.91248 0.91370 0.91768 0.92492 0.93448 0.94740 0.95928 0.97665
A1 −0.18418 −0.18181 −0.17407 −0.15984 −0.14073 −0.11429 −0.08936 −0.05178
A2 −0.17264 −0.17098 −0.16548 −1.55E − 01 −0.14019 −0.11808 −0.09549 −0.05816
A3 −0.07891 −0.07889 −0.07872 −0.07785 −0.07536 −0.06920 −0.06026 −0.04059
A4 −0.01264 −0.01300 −0.01411 −0.01589 −0.01762 −1.86E − 02 −0.01794 −0.01356

cumvent this, we calculated the decays for very small
values of this parameter, and verified that the results con-
verged for βw < 0.01. In case of B = 1, it was possible to
verify the result of Wolber and Hudson [13] for uniform
acceptor distribution. All results shown for βw = 0 in the
next section were calculated this way.

After the decay law is computed, the RET efficiency
is calculated again by numerical integration:

E = 1 −
∫ ∞

0
i(λ) dλ (21)

RESULTS AND DISCUSSION

Numerical Results and Empirical Fits

Our methodology consisted in calculating the RET
efficiencies (from integration of the decays, Eq. (21))
for chosen values of B ∈ [1.05, 3], βw ∈ [0.25, 2] and

β1 ∈ [0.2, 2]. For each (B, βw, β1) triad, E was calculated
for 30 equally spaced γ values in the [0, 3] range, and
these (γ , E) pairs were fitted to empirical functions of the
form

1 − E = A0 + A1[log10(γ )] + A2[log10(γ )]2

+A3[log10(γ )]3 + A4[log10(γ )]4 (22)

These 4th-degree polynomials in log10(γ ) fitted very
well to the data for all (B, βw, β1) combinations. As an
example, Fig. 3 shows the computed 1−E values and the
fitting curves for βw = 0 (planar system) and β1 = 1.5.
The maximum relative deviation between the numerical
results and the fitted curves for the 150 points shown was
1.9%, and the average deviation was 0.2%. Tables I–VIII
show all Ai coefficients recovered from all (γ , E) fits for
all explored (B, βw, β1) triads. Each table refers to a fixed
βw value (0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0) and
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Table VIII. Best Fit Parameters Ai of Eq. (22) to the Numerical Results Obtained for βw = 2.00

β1

0.20 0.40 0.60 0.80 1.00 1.25 1.50 2.00

B = 1.05
A0 0.96979 0.97092 0.97319 0.97613 0.97929 0.98311 0.98650 0.99158
A1 −0.06678 −0.06432 −0.05936 −0.05293 −0.04596 −0.03747 −0.02990 −0.01845
A2 −0.07356 −0.07108 −0.06603 −0.05937 −0.05203 −0.04288 −0.03456 −0.02163
A3 −0.04940 −0.04805 −0.04521 −0.04132 −0.03685 −0.03101 −0.02544 −0.01636
A4 −0.01584 −0.01551 −1.48E − 02 −0.01377 −0.01250 −0.01074 −0.00897 −0.00591

B = 1.25
A0 0.96969 0.97017 0.97158 0.97395 0.97692 0.98086 0.98454 0.99026
A1 −0.06699 −0.06597 −0.06289 −0.05772 −0.05120 −0.04249 −0.03430 −0.02143
A2 −0.07378 −0.07274 −0.06963 −0.06434 −0.05756 −0.04831 −0.03941 −0.02503
A3 −0.04952 −0.04896 −0.04724 −0.04423 −0.04023 −0.03451 −0.02871 −0.01880
A4 −0.01587 −0.01573 −0.01532 −0.01455 −0.01347 −1.18E − 02 −0.01002 −0.00675

B = 1.50
A0 0.96968 0.96999 0.97102 0.97293 0.97556 0.97931 0.98302 0.98910
A1 −0.06703 −0.06635 −0.06411 −0.05994 −0.05419 −0.04592 −0.03768 −0.02405
A2 −0.07381 −0.07313 −0.07087 −0.06662 −0.06068 −0.05198 −0.04310 −0.02800
A3 −0.04954 −0.04917 −0.04793 −0.04554 −0.04210 −0.03681 −0.03115 −0.02090
A4 −0.01587 −0.01578 −0.01548 −0.01489 −0.01398 −0.01249 −1.08E − 02 −0.00747

B = 2.00
A0 0.96967 0.96989 0.97065 0.97218 0.97442 0.97784 0.98145 0.98773
A1 −0.06704 −0.06657 −0.06491 −0.06159 −0.05669 −0.04915 −0.04118 −0.02714
A2 −0.07383 −0.07335 −0.07167 −6.83E − 02 −0.06327 −0.05541 −0.04690 −0.03147
A3 −0.04955 −0.04929 −0.04837 −0.04649 −0.04362 −0.03893 −0.03360 −0.02332
A4 −0.01587 −0.01581 −0.01559 −0.01513 −0.01439 −0.01310 −1.15E − 02 −0.00827

B = 3.00
A0 0.96966 0.96983 0.97044 0.97170 0.97364 0.97675 0.98017 0.98648
A1 −0.06705 −0.06669 −0.06537 −0.06262 −0.05839 −0.05157 −0.04400 −0.02993
A2 −0.07384 −0.07347 −0.07214 −6.94E − 02 −0.06503 −0.05795 −0.04993 −0.03459
A3 −0.04955 −0.04935 −0.04863 −0.04708 −0.04463 −0.04046 −0.03553 −0.02546
A4 −0.01587 −0.01583 −0.01565 −0.01528 −0.01465 −1.35E − 02 −0.01211 −0.00898

varying B (1.05, 1.25, 1.5, 2, and 3) and β1 (0.2, 0.4, 0.6,
0.8, 1.0, 1.25, 1.5, and 2.0) values.

Example of Application to Analysis
of Experimental RET Data

In a typical experiment, RET efficiencies are mea-
sured for several values of acceptor concentration, and
R0 is calculated from spectroscopic data concerning the
donor and acceptor probes (as described, e.g., in Ref. [4]).
Three unknowns remain at this stage, namely, R1, w, and
B (or, equivalently, β1, βw, and B). Due to correlation be-
tween these parameters, it is not feasible to recover them
all from a single RET experiment. Thus, R1 and w should
be fixed to values obtained from other structural studies
(e.g., X-ray diffraction or electron microscopy; for R1 see
for example [17, 18]). Should either R1 or w be unknown, a
possibility is to measure RET to an acceptor probe which
displays no preferential affinity for any lipid phase and

which should distribute uniformly even for nonuniform
lipid distribution (e.g., 1,6-diphenylhexatriene [15]), and
obtain the unknown parameter by comparing the curves
with B = 1 with the experimental data. However, B is usu-
ally the parameter of interest, which cannot be obtained
from other methodologies, apart from electron spin spec-
troscopy (see e.g., Ref. [19] for a review) and is the sole
optimized parameter in the RET analysis.

As an illustration of the utility of the pre-
sented formalism and numerical results, RET data from
the tryptophan (Trp) residues of the nicotinic acetyl-
choline receptor (AcChR) from Torpedo marmorata to
trans-parinaric acid (t-PnA) in egg phosphatidylcholine
(egg-PC)/1,2-dimirystoyl-sn-glycero-phosphatidic acid
(DMPA)/cholesterol (2:1:1) vesicles (for which there is
no evidence of phase separation in the absence of protein),
obtained by Poveda et al. [15], are analyzed. These authors
calculated R0 = 26.8 Å for the AcChR Trp/t-PnA pair, and
propose w = 10 and R1

∼=35 Å, which results in βw = 1.306
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and β1 = 0.373. One could use these values and obtain nu-
merically (γ , E) curves for different B values, and verify
which B value led to the best fit to the experimental data.
Instead, we used an approximate procedure, to illustrate
a more probable approximate (and rapid) use of our re-
sults by experimental researchers. Whereas no numerical
results were obtained specifically for βw = 1.306, polyno-
mial coefficients are given in this report for βw = 1.25. On
the other hand, β1 = 0.373 falls almost midway between
β1 = 0.25 and β1 = 0.50, the closest values for which there
are polynomial coefficients in the tables. One would ex-
pect then a researcher to interpolate the polynomial co-
efficients given here for (βw, β1) = (1.25, 0.25) and (βw,
β1) = (1.25, 0.50), and plot the curves for all B values
available, together with the experimental data (Fig. 4).
Visually, it is clear that the best overall B value for the
whole (γ , E) range is B = 1.25. More quantitatively, one
can sum the square of the difference between the experi-
mental and approximate theoretical E values. This sum is
equal in this case to 9.9×10−4 for B = 1.25, compared to
4.1×10−3 for B = 1.05 and 5.4×10−3 for B = 1.5.

t-PnA is a fluorescent probe notable for its prefer-
ential partition to the ordered gel phase, rather than the
disordered liquid crystalline phase, in phase-separated bi-
layers [20]. Of the two phospholipids in the mixed system,
DMPA is in the gel phase at room temperature, whereas
egg-PC is in the fluid phase. Therefore, if the presence
of AcChR induces heterogeneity of phospholipid distri-
bution, t-PnA will be expected to be preferably located in
the more ordered, DMPA-enriched domains. Thus, the re-
covery of B = 1.25 for t-PnA indicates a moderate enrich-
ment of this probe in the vicinity of AcChR, compatible
with preferential location of DMPA around the protein.
This is a specific effect for phosphatidic acid, which is not
observed for other phospholipid classes (phosphatidyl-
choline, phosphatidylserine, and phosphatidylglycerol).
On the other hand, in the absence of protein, all the phos-
pholipid classes, including phosphatidic acid, exhibit ideal
mixing behavior. Since phosphatidic acid and cholesterol
have been implicated in functional modulation of the re-
constituted AcChR, it is suggested that such a specific
modulatory role could be mediated by domain segrega-
tion of the relevant lipid classes, and may be important for
the protein function [15].

CONCLUSIONS

In this report, a formalism for RET in bilayer sys-
tems with heterogeneity in acceptor distribution around
each cylindrical donor is presented. There are three re-
gions: an exclusion region closest to the donor (R < R1),

a region for which the acceptor concentration is equal to
the overall value (R > R2), and, in between, the annular
region (R1 < R < R2), for which there is an increased
probability of finding acceptors. The resulting local accep-
tor concentration is a step-function of the donor–acceptor
distance.

The analytical law for the donor decay in the presence
of acceptor is given as a function of five dimensionless
variables: a dimensionless average concentration γ , the
reduced time λ, the reduced interplanar spacing βw, the
reduced exclusion distance β1, and the relative enrichment
factor for the acceptor in the annular region, B. Numerical
integration of the decay equation over time was carried
out, in order to calculate numerical RET efficiency curves
(γ , E) for chosen (B, βw, β1) triads. Empirical functions
described by five parameters could fit well to the numeri-
cal results, and values of the parameters are given for all
(B, βw, β1) sets. Finally, an application of the formalism
to experimental RET data is presented, illustrating how
biophysically meaningful information (such as protein-
induced heterogeneity of lateral lipid distribution) can be
straightforwardly obtained with this method.
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